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I. INTRODUCTION

This report is concerned with techniques of estimating the
parameter values of mathematical models. It begins with a brief
discussion of mathematical models and how they relate to the physical
situations they attempt to describe. Next, the method of least squares
as it applies to both linear and nonlinear models is investigated.
Special emphasis is given to nonlinear models with the linearization
method. Finally, the report is concluded with an example from
climatology.
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2. MATHEMATICAL MODELS

A problem that arises in many fields is that of determining
what relationships exist between variables. Suppose, for example
that an experiment has produced a sample of data consisting of a number
of simultaneous observations of a group of variables. It would be
convenient to put the data in the form of an array as shown below.

Yl Xll x12 "'" lk

Y2 x21 x22 "'" X2k

Yi  xii x 2  xik

Yn X n Xn2  Xnk

Each row represents one simultaneous observation of all the variables,
and each column represents all the observed values of a particular
variable. One variable (which one depending on the nature of the
experiment) is designated the response or dependent variable (denoted
by y), and the others are called independent variables (denoted by
X1, x2 ..... xk). From the sample of data, a researcher would like to

make inferences about possible relationships existing between the
independent and dependent variables. Mathematical models are commonly

[ used to describe and measure the strength of these relationships. They

also provide a means of predicting the value of the dependent variable
for any given setting of the independent variables.

The relationship between the dependent and independent variables
is rarely a functional one, where the behavior of the dependent variable
can be predicted exactly from the independent variables. Experiments
are of course vulnerable to error, and the results may include effects
from outside sources. Consequently, the mathematical models under
consideration must allow for noise in the data. Models of this kind
are called probabilistic models and have the form

y = f(x,O) + r
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where x = (xl,x 2,. .. xk ) is a vector of independent variables,

0 - (Ol,2, ...,0) is a vector of parameters, and r is the residual

or difference between the observed value y and the predicted value
f(x,O) of the dependent variable.

The residual r is made up of two components. The pure experimental
error (e) and the error due to lack of fit (e). The pure experimental
error may be due to inaccuracies in the instruments, human mistakes, etc..
It is an inherent part of the data at this point and beyond our control.
Some assumptions are usually made about e: that it is random in nature
and has expectation zero. If this is so, then the data has no systematic
source of error that would tend to skew the results in one direction or
another. The error due to lack of fit is the error in the model, and it
too may arise from a number of sources. Perhaps not all the significant
variables are accounted for, or perhaps the relationship expressed by

the model is not an appropriate one to use.

With these considerations, the model may be rewritten

y - f(x,G) + e + E where r = e + E.

The function f and the computed values of the parameters are ideally those

that minimize e and average out c.

Once a particular function f is chosen for the model, the next
problem is to compute the parameter values. The parameter values are
those that best describe the particular sample of data available, and
are used as estimates of the parameter values that best fit the larger
population. The methods of computing the parameter values depend on
the for of f; specifically, whether f is linear or nonlinear with
respect to its parameters. Linear models have the form

y = Q0 + xOx + O9x + + k  r,
y 0% 1 1 2 2 +kxk+r

and models not of this form, with respect to the parameters, are nonlinear.
Some examples of linear and nonlinear models are shown below.

Some Linear Models

y = 0 0+ 0 x + 02x 2 + 03x3 + r (cubic polynomial, one independent variable)

y = Q0 sin xI + 0 2x2 + 0 3x2 sin x + r (two independent variables).

Some Nonlinear Models
02

y = I - exp{-0Ix I + r (used in modeling visibility, see reference F51 )

y = 1 - (1 - x) 0 2 + r (used in modeling skycover, see reference [61 ).

3



3. METHOD OF LEAST SQUARES IN THE LINEAR CASE

Suppose that the set of data

Yl X11  x12 "Xlk

Y2 x2 1  X 2 2 "'X2k

Yi Yil x 1 . k

Yn Ynl Xn2 Xnk

is given and a linear model, Y = 0 + +1 x2 + "' + Okxk + r, is

chosen to express a relationship between the dependent variable y and
the independent variables xl, X 2,'.,xk'

Regardless of what values may be arbitrarily assigned to the
parameterq G., 01,...,8k9 for each observation in the data set, there

exists an ri so that
Y =  + 0x + 02x + +  x + r
y1  0 111 2 12 k ik i

This equation is called an observation equation. Solving for ri gives

ri yl -0 1 x11 2 xi2 " - kXik

Intuitively, one would like to find the values for got k that
minimize ir i for each observation in the data set. The method of least

squares finds those parameter values that minimize instead the sum of the
squared residuals over all the observations. That is, those parameter
values that minimize

n 2 n )2
RSS E1 r = (y i - 20 Xil 2 x12 k " - k

i.i i-i

are found.

4



Observe that RSS is a function of the parameters 00,"l...,Ok;

Yi' xill xi2 .... , x1 k all being known values (the data). To minimize

RSS, its partial derivative with respect to each P, is taken and set
Jequal to zero. The resulting system of k + I linedr equations in k + 1

unknowns (often called the normal equations) has as its solution
the vector of parameter values that minimize RSS.

The Dartial derivatives are shown below:

n
RSS =-2 (y- 0 -O X -O 1xi2 - ...2ix ik
3A0 i=l

ARSS n
-- =-2 X (Y i - 0 - li -11 2x2 - k' x gkik )xil

@i i=l

n
3RSS
----- =-2 Z (Yi-O -Qx -2x -""- xi )x

j i=1

n

oRSS -2 E (Y -O -0 x - x - - kikxik
30k  i=l

Setting them equal to zero and simplifying them algebraically yields
the system of normal equations:

n+ 0YX + 0 Zx .00n 01 ii 2 i2.. k 1k = Y

x +0 2 + E Xxx +. + x x
0 il i il 2 i2 il k ik il YXil

O xij + 81 xilxij + 82 i2ij + + Qk Z xikxij E Yixij

2
0 x +0 Xxx + Xx x +.+ 0 Xx 2 X

0 ik + ilik 2 i2ik k ik Xik

5



The equations may be further simplified by using MATRIX notation.
Let Y be the column vector of values of the dependent variable:

yl
Y2•

Y Yi, and let X be the matrix of values of the independent

Ynj

variables, appended on theleft with a column vector of l's:
1 ll x2 ... Xl

x11 x12 1 k"
x 21 x22 ... 2k

X= ••Lastly, define 9 to be the column vector

x il x12 . ik

x1 X n2 ... Xnk

of parameters in the model and r to be the column vector of residuals:

01r

02 r2

0 = 0. r = r i  Then the system of n observation

0 k  rn

equations

Yl = 0 + x 02x12 + + 0kXlk + rl

Y2 0+0 1x21 + 02x22 +  + 0kx2k + r2

Yi = 00 + 01xil + 02x1 2 + ' + OkX ik + r.

Yn 0 0 +  lX nl + 02Xn2 +" + 0kxnk + rn

6



may be written simply as

Y = XO+r

Furthermore, the Yi-i equations may be rewritten in terms of matrix

multiplication:
n X il I.x i2 ... X ik (4 0y i

ii il Xi2 ..... . l 1k I

. l ?X 2 i?.. YXx12 X ik "i2. ii "' IixkI 0

*I

:X ~ ,.X X X ... x* )y x
ij XilXij  ix2 ij  . ijxk I iij

'Xik EX lx ik ,xi2 xik i 1 9k[ Xy ik

Noting that the matrix on the left is X fX and the matrix on the right
is XrY, the entire system of normal equations may be expressed by the

single matrix ecr-ation

(XT X)q = (xr y)

Finally, solving for G gives

_ = (x X) - (Xr y)

This is a very powerful result, since it holds for any linear model

and corresponding set of n I k + 1 observations (where n is the number of
observations and k + 1 is the number of parameters; that is, there should
be at least as many observations in the data set as parameters in the
model). The first step would be to construct the matrices X and Y from
the data. Then the parameter values that ninimize RSS are those that

satisfy the linear system

T:' X) 4 T(' Y)

Most computer installations have routines for solving systems of linear
equations. As a warning, however, this particular system is often ill-
conditioned, so round-off error is an important factor in the computations.

7



4. METHOD OF LEAST SQUARES IN THE NONLINEAR. CASE

Suppose that the sample of data

Yl X1 1  x1 2 " "Xlk

Y2 x21 x2 2 " " X2 k

Yi Xil x i2 . . Xik

Yn Xnl Xn2 " Xnk

is given and a nonlinear model, y = f(x,O) + r, is chosen to express
a relationship between the dependent variable y and the independcnt
variables xl, x2 , ... , xk .

Proceeding in much the same way as for the linear model, regardless
of what values may be arbitrarily assigned to the parameters, for each
observation in the data set there exists an r. so that

Yi = f(xi, 0) + ri

Solving for ri gives

ri = Y- f(x ,,).

The method of least squares minimizes the quantity

n n

RSS = r2  = - f(xiQ)) 2

i=l i=l

with respect to its parameters by setting the partial derivatives equal
to zero and solving the resulting system of equations. The partial
derivatives are of the form shown below:

ORSSnf

o.S = -2 F -(yi )  af(x for j = 1, ... ,p.

i=1 Qj

8



Therefore, the system of normal equations is

n
E (yi - f(x1,)) af(_,O) = 0 for j = 1, p

i=i 3

This approach may be fine for some nonlinear models, but for others
difficulties arise. The model may be so complex that the partial derivatives
are difficult to obtain. Furthermore, since the model is nonlinear the
partial derivatives and normal equations are also nonlinear. Systems of
nonlinear equations can be difficult to solve, and iterative techniques
are almost always required. Also, more than one solution to the system
may exist, corresponding to the critical values of RSS. In this case,
each solution must be tested to determine which produces the minimum
value of RSS. For these reasons, other methods have been devised for
estimating the parameter values of a nonlinear model.

9-_ __ _



5. THE LINEARIZATION METHOD

The linearization method of nonlinear regression has three distinguishing
features. First, it is an iterative procedure. Given an initial estimate
of the parameter values, a "better" estimate is computed with each successive
iteration. he parameter values are refined in this manner an unknown number
of times until finally some stopping criterion is met. Second, it is not
self-starting. This means that the method does not provide a way of obtaining
that initial estimate of the parameter values. The researcher must use
whatever information is at hand to make the first guess. Lastly, linear
approximations of the nonlinear model are used to compute the parameter
values, so the techniques already developed for linear models are applicable.

Let T = (tl,t2 , ... t p) be the current best estimate of 0 = (O1e2 ..... p

To "linearize" the nonlinear model

y = f(x,Q) + r,

a first order Taylor series expansion of f about T is made. The expansion
is a linear polynomial in (9. - t.) of the form

J J

P af(x,T)
P(x,G) = f(x,T) + E (0. - t.)

j=l

For 9 close to T, P (x,Q) = f(x,Q). Therefore, substituting P for f gives
a linear approximation of the nonlinear model.

y = P(x,G) + r
P D f (x.)

y = f(x,T) + E ---- () - tj) + r
j=l a Qi

y - f(x,T) a f (0- tl + a 2f (f(x,) - t ) + r
ag 2p p

1 2 p

In terms of the linear approximation, the system of observation equations is

yi - f(x I,) = af(Ix.1) (1- tl)+f(xi'T)(2- t2)+''.+ 3f(x i1) (0p-t ) + r.

i j) 1 1 2-2 A (0
1 2 p

for i = 1,2,...,n. Note that yi, ?i J , f(x.,T), and f(x' T) are all

known values or values that can be computed directly. The only unknowns are
the 0. in (9 t.). Letting

I J jI

W = (x- , Z y ,T = O - ti and the matrices
Ij

10
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W W Wz y f T (-x r-)t
W1 1  W1 2  1 p I I 1 I

W.)I W2, Wp Z, Ip"2-f(x 2,) 2- t

W4= , -= - -,

WnI Wn2 . np Z 11 (x ,T) 0 -t

t r

0 2 Lt2 r 2

LL

0 = " T' , anld r =  "

0 tr
p pn

then the system of observation equations may be written

Z= W +r .

Applying linear least squares theory, the soluti,)n for _ that minimizes

n1 1) )f (x. . T).

RSS = y-f(xiT -Z (0-t.)
t in Yi- I .

is given by

6 - (WW) -  (WVz)

and the new estimate of 0 is

0 = o +T

6 may be thought of as being a correction voctor, so that when added to

the old estimate of the parameter values, a newer, "better" estimate is
obtained. The method now calls for substituting the new estimate of the

parameter values in for T, and repeating the procedure. The following
flowchart out]lines the algorithm.

1i
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Ohviously some t'St must be n mdte to dtetermlnt' when to halt te
procedure, as indicated in the f lowc hart by tie test for convergente.
Any one of several tests may be used. Intuit ively ont would halt the
procedure when the est imates ot t-he pa rameter values approach a li miting
value; i.e., when the ditterence between two consvautive estimates is
smill1. It A is any mtrix, let !I denot, tht largest absolutt, valuie of
the elements of A. Then one possible test fujr convergence is the re latiton

F

where c I is some prescribed constant valte .id the division is ill

element-wist division between tlie matr ices ' and 1'. This relkt iol tests
whether the largest proport ional hangt ill i he cest imates is I ess than LI'

It is rmost appropr Liate when the relative rutgni t odes ot the paramet ers
are unkn,,wn. I'ypical values !4,r C I art, ill tht. ;iige 1I)-  to IIJ-6

An.,th ei tt st tor tonvergvnt c might be pe rformedl by c'omparin v tie
SUM )f t ho .qrlid residual I for two ',nset Ut ivye est imates oi t ht

paramett.r, I Ihe suim 1 tie squared rcsidii;Is ItI the noInl inear midevl,

gi vtr by

IilN -S 4) - 2 y f (x 1 144)

i i f ti,,tii i ,nd is a measurt. ('I th- go tldl :-es, Ot fit ot tHi. model.

Rea-lI thait in tht' aigirithm thth mat ice- 4 mund I reprt-sellt two, lls-cutive
est imt t tht par.imetet v ltimts. l1 enct , rvrgtn t' mav he test.d by
tile r, 1,it ion .

, S (I1

wher. , -,oni. usnt ,ti t. li s is appealing iii the sense th.,t it di r(ct ly
test s tot , il11 Itrf,.-T * .v in tht. it ht wi.-en the two mode, s. It is on-
,eivahle tl it t wt,!t- range it v lus Ior I lit' par.imtters might give approx-
iritt. tic -iatme Iit, in whi, t ,st- thi; tt- t wini Id assume okivt.rgnll(e
h, I ire t he other . llow,-ver , It the on I N pitrpise in est imat in' ti,. ipairame ter
v.alJues is i obtain a goiod fit, then the test is appropriate.

Lastl, t it import amn e of good start ing vIues .hould he st tessed.
onve rgent e in the I inear i7,t Ion method Is not guaranteed; Its .s tSt ess,

.a iI tire and peed may wl' I 1 it-Pend on how good t he start i ng val ues ;ir e

13 i



(among other things). (To allow for the possibility that convergence
fails, a bound on the number of iterations allowed should be included in
the algorithm.) As mentioned earlier, the researcher is left up to
his/her own ingenuity in finding starting values, making use of whatever
information is available. One suggestion is to plot a grid of the RSS
computed at various parameter values to get an idea of where minimums
might occur. For difficult problems, more complicated variations of the
linearization method may be employed. Also, the NLIN procedure of the
Statihtical Analysis System (SAS) is a software package that performs
an extensive analysis of the nonlinear regression problem.

14



t). AN EXAMPLE FROM cI.!,rTOLO;Y

(limatological data is col lected on a daily basis at sevtrcl
locations around the world. The data includes observations oI vai ious
surface weat her conditions such as rainfall, skycovvr, ce I I I ng, and

visibility. The visibility observations recorded over the years are

grouped so that for a given location, month, and hour period ther. are
15 data points of the form (x,y) , where x is distance in statute mi lv.

aid y Is the proportion of the time in the past that visibilitv 1has been

less than or equal to x. The following dat t comes tron (orSe , ';vw onu,!-

land in February during the hour,; o)f 090) to 1100:

.25 .1)03

.3125 .015

.5 .017

.625 .023

.75 .025

1.00 .0i8

1.25 .065
1.5 .073
2.00 .095
2.5 .126

3 .114
4 .159

5 .188
6 209

10 261

Problem: For a given location, monti,, and hour period, brii Id a prbabi I ity

model relating distance (x) to the proportion of the time that visibi I itv
has been less than or equal to x (y).

The Weibul I cumulative frequency distribut ion funct ion has b,.en ust'd

to model the visibility data for several til these locat ions. In the

mode I

y f(x,Q) + r = l-e- x  + r,

the vector x of independent variables consists only of x, and ';, tit-

vector of parait-Lers, Is ( ,Q,). The model is obviously ntmliinear in
its parameters, so the linearization method Is used to compute the

parameter values.

The first problem is that of finding start"ng values for th.

parameters. These may be obtained by taking two observations from the



data set, substituting them into the formula

y P -Q j x " ,

and solving for I and 02' which is equivalent to fitting the curve

through the two data points exactly. If (xiy i ) and (xj,y) are the

two observations chosen, then we have the system

Yl - elxi
0 2

-O1 xj
yj - e

which, after some manipulation, yields

r In l-y ,
In _Iln(1-y )I 

11 Y
0", -- and 91 -l 2ly

- In -)

Using (1.00, 0.038) and (5.00, 0.188) from the data shown earlier, the

starting values are
A
4= .0387408 and 2 = 1.045

Th. next problem is to "linearize" the model. Recall that if

I (tI  t, ... t ) is the current best estimate of 0 = (01,02 V 9 . p),
p

then the nonlinear model is approximated by

if (_x,'r) if (xT) if(x,T)

. I( -t ) + 52 (@2-t2) + ..' + (Op-t p)

t(x,W) I - e , and the partial derivatives are

f(Xit t ,-(x,T) xt2
= x " e and .. .. . t in(x) • x e

1 ' 21

r,k the I inear approximation is

t' t, -ttx
- -t. t!X = Ixt  e 1(i -t )+It C 'n(x)'x "e 1(0 2-t2) + r

16



From this the matrices Z and W may be ident ified:

yl-[L - e- t I t 2  t 2• e -tIx 1 2  tI  9n (xl XLt) e-t xl 2

-t x? t 2  - t lx 2 ( ) t tX 1 21

y2 -[I - etx 2
2  x t 2  e-tix2 t1 ,n(x2 x2t2 e -tI

Z= W=

Yn-[1- e-t lxn2
]  x t2 • e t xt 2 t 1  •in(x x t2 - e-t xnt2j

Now that starting values have been found and we know how to compute Z and

W, we merely follow the algorithm expressed in the flowchart. The visibility

data from Goose, Newfoundland converged after 7 iteratio-is. Convergence was

assumed when the proportional change in the RSS for two consecutive estimates

was less than I x 10-8 . Below are the intermediate and final estima2s,

computed by a program written in PROC MATRIX of the Statistical Analysis System.

Double precision arithmetic was used.

Iteration (1 02 RSS

0 (Starting values) .0387408 1.045 .010229

1 .0560605 .734919 .00336779
2 .0546557 .787792 .00261866

3 .0553048 .77971 .00261354

4 .055203 .780875 .00261344

5 .055218 .780708 .00261344

6 .0552159 .780732 .00261344

7 .0552162 .780729 .00261344

17
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